JsonValidityEvaluator#
- class langchain.evaluation.parsing.base.JsonValidityEvaluator(**kwargs: Any)[source]#
Evaluate whether the prediction is valid JSON.
- This evaluator checks if the prediction is a valid JSON string. It does not
require any input or reference.
- Parameters:
kwargs (Any)
- requires_input#
Whether this evaluator requires an input string. Always False.
- Type:
bool
- requires_reference#
Whether this evaluator requires a reference string. Always False.
- Type:
bool
- evaluation_name#
The name of the evaluation metric. Always “json”.
- Type:
str
Examples
>>> evaluator = JsonValidityEvaluator() >>> prediction = '{"name": "John", "age": 30, "city": "New York"}' >>> evaluator.evaluate(prediction) {'score': 1}
>>> prediction = '{"name": "John", "age": 30, "city": "New York",}' >>> evaluator.evaluate(prediction) {'score': 0, 'reasoning': 'Expecting property name enclosed in double quotes'}
Attributes
The name of the evaluation.
Whether this evaluator requires an input string.
Whether this evaluator requires a reference label.
Methods
__init__
(**kwargs)aevaluate_strings
(*, prediction[, ...])Asynchronously evaluate Chain or LLM output, based on optional input and label.
evaluate_strings
(*, prediction[, reference, ...])Evaluate Chain or LLM output, based on optional input and label.
- async aevaluate_strings(*, prediction: str, reference: str | None = None, input: str | None = None, **kwargs: Any) dict #
Asynchronously evaluate Chain or LLM output, based on optional input and label.
- Parameters:
prediction (str) – The LLM or chain prediction to evaluate.
reference (Optional[str], optional) – The reference label to evaluate against.
input (Optional[str], optional) – The input to consider during evaluation.
kwargs (Any) – Additional keyword arguments, including callbacks, tags, etc.
- Returns:
The evaluation results containing the score or value.
- Return type:
dict
- evaluate_strings(*, prediction: str, reference: str | None = None, input: str | None = None, **kwargs: Any) dict #
Evaluate Chain or LLM output, based on optional input and label.
- Parameters:
prediction (str) – The LLM or chain prediction to evaluate.
reference (Optional[str], optional) – The reference label to evaluate against.
input (Optional[str], optional) – The input to consider during evaluation.
kwargs (Any) – Additional keyword arguments, including callbacks, tags, etc.
- Returns:
The evaluation results containing the score or value.
- Return type:
dict