AI21Embeddings#
- class langchain_ai21.embeddings.AI21Embeddings[source]#
Bases:
Embeddings
,AI21Base
AI21 embedding model.
To use, you should have the ‘AI21_API_KEY’ environment variable set or pass as a named parameter to the constructor.
Example
from langchain_ai21 import AI21Embeddings embeddings = AI21Embeddings() query_result = embeddings.embed_query("Hello embeddings world!")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param api_host: str | None = None#
- param api_key: SecretStr | None = None#
- Constraints:
type = string
writeOnly = True
format = password
- param batch_size: int = 128#
Maximum number of texts to embed in each batch
- param num_retries: int | None = None#
- param timeout_sec: float | None = None#
- async aembed_documents(texts: List[str]) List[List[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (List[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
List[float]