Source code for langchain_text_splitters.spacy
from __future__ import annotations
from typing import Any, List
from langchain_text_splitters.base import TextSplitter
[docs]
class SpacyTextSplitter(TextSplitter):
"""Splitting text using Spacy package.
Per default, Spacy's `en_core_web_sm` model is used and
its default max_length is 1000000 (it is the length of maximum character
this model takes which can be increased for large files). For a faster, but
potentially less accurate splitting, you can use `pipeline='sentencizer'`.
"""
[docs]
def __init__(
self,
separator: str = "\n\n",
pipeline: str = "en_core_web_sm",
max_length: int = 1_000_000,
**kwargs: Any,
) -> None:
"""Initialize the spacy text splitter."""
super().__init__(**kwargs)
self._tokenizer = _make_spacy_pipeline_for_splitting(
pipeline, max_length=max_length
)
self._separator = separator
[docs]
def split_text(self, text: str) -> List[str]:
"""Split incoming text and return chunks."""
splits = (s.text for s in self._tokenizer(text).sents)
return self._merge_splits(splits, self._separator)
def _make_spacy_pipeline_for_splitting(
pipeline: str, *, max_length: int = 1_000_000
) -> Any: # avoid importing spacy
try:
import spacy
except ImportError:
raise ImportError(
"Spacy is not installed, please install it with `pip install spacy`."
)
if pipeline == "sentencizer":
from spacy.lang.en import English
sentencizer: Any = English()
sentencizer.add_pipe("sentencizer")
else:
sentencizer = spacy.load(pipeline, exclude=["ner", "tagger"])
sentencizer.max_length = max_length
return sentencizer