Source code for langchain_core.tools.convert
import inspect
from typing import Any, Callable, Dict, Literal, Optional, Type, Union, get_type_hints
from langchain_core.callbacks import Callbacks
from langchain_core.pydantic_v1 import BaseModel, Field, create_model
from langchain_core.runnables import Runnable
from langchain_core.tools.base import BaseTool
from langchain_core.tools.simple import Tool
from langchain_core.tools.structured import StructuredTool
[docs]
def tool(
*args: Union[str, Callable, Runnable],
return_direct: bool = False,
args_schema: Optional[Type] = None,
infer_schema: bool = True,
response_format: Literal["content", "content_and_artifact"] = "content",
parse_docstring: bool = False,
error_on_invalid_docstring: bool = True,
) -> Callable:
"""Make tools out of functions, can be used with or without arguments.
Args:
*args: The arguments to the tool.
return_direct: Whether to return directly from the tool rather
than continuing the agent loop. Defaults to False.
args_schema: optional argument schema for user to specify.
Defaults to None.
infer_schema: Whether to infer the schema of the arguments from
the function's signature. This also makes the resultant tool
accept a dictionary input to its `run()` function.
Defaults to True.
response_format: The tool response format. If "content" then the output of
the tool is interpreted as the contents of a ToolMessage. If
"content_and_artifact" then the output is expected to be a two-tuple
corresponding to the (content, artifact) of a ToolMessage.
Defaults to "content".
parse_docstring: if ``infer_schema`` and ``parse_docstring``, will attempt to
parse parameter descriptions from Google Style function docstrings.
Defaults to False.
error_on_invalid_docstring: if ``parse_docstring`` is provided, configure
whether to raise ValueError on invalid Google Style docstrings.
Defaults to True.
Returns:
The tool.
Requires:
- Function must be of type (str) -> str
- Function must have a docstring
Examples:
.. code-block:: python
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool(response_format="content_and_artifact")
def search_api(query: str) -> Tuple[str, dict]:
return "partial json of results", {"full": "object of results"}
.. versionadded:: 0.2.14
Parse Google-style docstrings:
.. code-block:: python
@tool(parse_docstring=True)
def foo(bar: str, baz: int) -> str:
\"\"\"The foo.
Args:
bar: The bar.
baz: The baz.
\"\"\"
return bar
foo.args_schema.schema()
.. code-block:: python
{
"title": "fooSchema",
"description": "The foo.",
"type": "object",
"properties": {
"bar": {
"title": "Bar",
"description": "The bar.",
"type": "string"
},
"baz": {
"title": "Baz",
"description": "The baz.",
"type": "integer"
}
},
"required": [
"bar",
"baz"
]
}
Note that parsing by default will raise ``ValueError`` if the docstring
is considered invalid. A docstring is considered invalid if it contains
arguments not in the function signature, or is unable to be parsed into
a summary and "Args:" blocks. Examples below:
.. code-block:: python
# No args section
def invalid_docstring_1(bar: str, baz: int) -> str:
\"\"\"The foo.\"\"\"
return bar
# Improper whitespace between summary and args section
def invalid_docstring_2(bar: str, baz: int) -> str:
\"\"\"The foo.
Args:
bar: The bar.
baz: The baz.
\"\"\"
return bar
# Documented args absent from function signature
def invalid_docstring_3(bar: str, baz: int) -> str:
\"\"\"The foo.
Args:
banana: The bar.
monkey: The baz.
\"\"\"
return bar
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(dec_func: Union[Callable, Runnable]) -> BaseTool:
if isinstance(dec_func, Runnable):
runnable = dec_func
if runnable.input_schema.schema().get("type") != "object":
raise ValueError("Runnable must have an object schema.")
async def ainvoke_wrapper(
callbacks: Optional[Callbacks] = None, **kwargs: Any
) -> Any:
return await runnable.ainvoke(kwargs, {"callbacks": callbacks})
def invoke_wrapper(
callbacks: Optional[Callbacks] = None, **kwargs: Any
) -> Any:
return runnable.invoke(kwargs, {"callbacks": callbacks})
coroutine = ainvoke_wrapper
func = invoke_wrapper
schema: Optional[Type[BaseModel]] = runnable.input_schema
description = repr(runnable)
elif inspect.iscoroutinefunction(dec_func):
coroutine = dec_func
func = None
schema = args_schema
description = None
else:
coroutine = None
func = dec_func
schema = args_schema
description = None
if infer_schema or args_schema is not None:
return StructuredTool.from_function(
func,
coroutine,
name=tool_name,
description=description,
return_direct=return_direct,
args_schema=schema,
infer_schema=infer_schema,
response_format=response_format,
parse_docstring=parse_docstring,
error_on_invalid_docstring=error_on_invalid_docstring,
)
# If someone doesn't want a schema applied, we must treat it as
# a simple string->string function
if dec_func.__doc__ is None:
raise ValueError(
"Function must have a docstring if "
"description not provided and infer_schema is False."
)
return Tool(
name=tool_name,
func=func,
description=f"{tool_name} tool",
return_direct=return_direct,
coroutine=coroutine,
response_format=response_format,
)
return _make_tool
if len(args) == 2 and isinstance(args[0], str) and isinstance(args[1], Runnable):
return _make_with_name(args[0])(args[1])
elif len(args) == 1 and isinstance(args[0], str):
# if the argument is a string, then we use the string as the tool name
# Example usage: @tool("search", return_direct=True)
return _make_with_name(args[0])
elif len(args) == 1 and callable(args[0]):
# if the argument is a function, then we use the function name as the tool name
# Example usage: @tool
return _make_with_name(args[0].__name__)(args[0])
elif len(args) == 0:
# if there are no arguments, then we use the function name as the tool name
# Example usage: @tool(return_direct=True)
def _partial(func: Callable[[str], str]) -> BaseTool:
return _make_with_name(func.__name__)(func)
return _partial
else:
raise ValueError("Too many arguments for tool decorator")
def _get_description_from_runnable(runnable: Runnable) -> str:
"""Generate a placeholder description of a runnable."""
input_schema = runnable.input_schema.schema()
return f"Takes {input_schema}."
def _get_schema_from_runnable_and_arg_types(
runnable: Runnable,
name: str,
arg_types: Optional[Dict[str, Type]] = None,
) -> Type[BaseModel]:
"""Infer args_schema for tool."""
if arg_types is None:
try:
arg_types = get_type_hints(runnable.InputType)
except TypeError as e:
raise TypeError(
"Tool input must be str or dict. If dict, dict arguments must be "
"typed. Either annotate types (e.g., with TypedDict) or pass "
f"arg_types into `.as_tool` to specify. {str(e)}"
)
fields = {key: (key_type, Field(...)) for key, key_type in arg_types.items()}
return create_model(name, **fields) # type: ignore
[docs]
def convert_runnable_to_tool(
runnable: Runnable,
args_schema: Optional[Type[BaseModel]] = None,
*,
name: Optional[str] = None,
description: Optional[str] = None,
arg_types: Optional[Dict[str, Type]] = None,
) -> BaseTool:
"""Convert a Runnable into a BaseTool.
Args:
runnable: The runnable to convert.
args_schema: The schema for the tool's input arguments. Defaults to None.
name: The name of the tool. Defaults to None.
description: The description of the tool. Defaults to None.
arg_types: The types of the arguments. Defaults to None.
Returns:
The tool.
"""
if args_schema:
runnable = runnable.with_types(input_type=args_schema)
description = description or _get_description_from_runnable(runnable)
name = name or runnable.get_name()
schema = runnable.input_schema.schema()
if schema.get("type") == "string":
return Tool(
name=name,
func=runnable.invoke,
coroutine=runnable.ainvoke,
description=description,
)
else:
async def ainvoke_wrapper(
callbacks: Optional[Callbacks] = None, **kwargs: Any
) -> Any:
return await runnable.ainvoke(kwargs, config={"callbacks": callbacks})
def invoke_wrapper(callbacks: Optional[Callbacks] = None, **kwargs: Any) -> Any:
return runnable.invoke(kwargs, config={"callbacks": callbacks})
if (
arg_types is None
and schema.get("type") == "object"
and schema.get("properties")
):
args_schema = runnable.input_schema
else:
args_schema = _get_schema_from_runnable_and_arg_types(
runnable, name, arg_types=arg_types
)
return StructuredTool.from_function(
name=name,
func=invoke_wrapper,
coroutine=ainvoke_wrapper,
description=description,
args_schema=args_schema,
)