Source code for langchain_core.embeddings.fake
"""Module contains a few fake embedding models for testing purposes."""
# Please do not add additional fake embedding model implementations here.
import hashlib
from typing import List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel
[docs]
class FakeEmbeddings(Embeddings, BaseModel):
"""Fake embedding model for unit testing purposes.
This embedding model creates embeddings by sampling from a normal distribution.
Do not use this outside of testing, as it is not a real embedding model.
Example:
.. code-block:: python
from langchain_core.embeddings import FakeEmbeddings
fake_embeddings = FakeEmbeddings(size=100)
fake_embeddings.embed_documents(["hello world", "foo bar"])
"""
size: int
"""The size of the embedding vector."""
def _get_embedding(self) -> List[float]:
import numpy as np # type: ignore[import-not-found, import-untyped]
return list(np.random.normal(size=self.size))
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [self._get_embedding() for _ in texts]
[docs]
def embed_query(self, text: str) -> List[float]:
return self._get_embedding()
[docs]
class DeterministicFakeEmbedding(Embeddings, BaseModel):
"""Deterministic fake embedding model for unit testing purposes.
This embedding model creates embeddings by sampling from a normal distribution
with a seed based on the hash of the text.
Do not use this outside of testing, as it is not a real embedding model.
Example:
.. code-block:: python
from langchain_core.embeddings import DeterministicFakeEmbedding
fake_embeddings = DeterministicFakeEmbedding(size=100)
fake_embeddings.embed_documents(["hello world", "foo bar"])
"""
size: int
"""The size of the embedding vector."""
def _get_embedding(self, seed: int) -> List[float]:
import numpy as np # type: ignore[import-not-found, import-untyped]
# set the seed for the random generator
np.random.seed(seed)
return list(np.random.normal(size=self.size))
def _get_seed(self, text: str) -> int:
"""Get a seed for the random generator, using the hash of the text."""
return int(hashlib.sha256(text.encode("utf-8")).hexdigest(), 16) % 10**8
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [self._get_embedding(seed=self._get_seed(_)) for _ in texts]
[docs]
def embed_query(self, text: str) -> List[float]:
return self._get_embedding(seed=self._get_seed(text))