from __future__ import annotations
from datetime import datetime
from typing import (
Any,
Callable,
Dict,
List,
Mapping,
MutableMapping,
Optional,
Sequence,
Tuple,
Union,
)
from langchain_core.agents import AgentAction, AgentActionMessageLog
from langchain_core.messages import AIMessage, BaseMessage, SystemMessage
from langchain_core.prompts import (
BasePromptTemplate,
ChatPromptTemplate,
PromptTemplate,
)
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.tools import BaseTool
from langchain_cohere.react_multi_hop.default_prompt_constants import (
_SpecialToken,
default_basic_rules,
default_multi_hop_instruction,
default_safety_rules,
default_style_guide,
default_task_context,
)
from langchain_cohere.utils import (
JSON_TO_PYTHON_TYPES,
_remove_signature_from_tool_description,
)
multi_hop_prompt_partial = PromptTemplate.from_template(
"""{structured_preamble}
## Available Tools
Here is a list of tools that you have available to you:
{tools}{end_turn}{history}{user_prompt}{start_turn}{system_role}{multi_hop_instruction}{end_turn}{steps}"""
).partial(
start_turn=_SpecialToken.start_turn.value,
end_turn=_SpecialToken.end_turn.value,
system_role=_SpecialToken.role_system.value,
multi_hop_instruction=default_multi_hop_instruction,
)
[docs]
def render_structured_preamble(
preamble: Optional[str] = None,
) -> str:
"""Renders the structured preamble part of the prompt content."""
if preamble is None:
default_preamble = """## Task And Context
{task_and_context}
## Style Guide
{style_guide}"""
preamble = default_preamble.format(
task_and_context=default_task_context.format(
now=datetime.now().strftime("%A, %B %d, %Y %H:%M:%S")
),
style_guide=default_style_guide,
)
structured_preamble_template = """{prompt_start}# Safety Preamble
{safety_rules}
# System Preamble
## Basic Rules
{basic_rules}
# User Preamble
{preamble}"""
return structured_preamble_template.format(
prompt_start=f"{_SpecialToken.bos.value}{_SpecialToken.start_turn.value}{_SpecialToken.role_system.value}",
safety_rules=default_safety_rules,
basic_rules=default_basic_rules,
preamble=preamble,
)
[docs]
def render_observations(
observations: Union[List[Mapping[str, str]], List[str], Mapping[str, str], str],
index: int,
) -> Tuple[BaseMessage, int]:
"""Renders the 'output' part of an Agent's intermediate step into prompt content."""
documents = convert_to_documents(observations)
rendered_documents: List[str] = []
document_prompt = """Document: {index}
{fields}"""
for doc in documents:
# Render document fields into Key: value strings.
fields: List[str] = []
for k, v in doc.items():
if k.lower() == "url":
# 'url' is a special key which is always upper case.
k = "URL"
else:
# keys are otherwise transformed into title case.
k = k.title()
fields.append(f"{k}: {v}")
rendered_documents.append(
document_prompt.format(
index=index,
fields="\n".join(fields),
)
)
index += 1
prompt_content = "<results>\n" + "\n\n".join(rendered_documents) + "\n</results>"
return SystemMessage(content=prompt_content), index
[docs]
def convert_to_documents(
observations: Any,
) -> List[MutableMapping]:
"""Converts observations into a 'document' dict"""
documents: List[MutableMapping] = []
if isinstance(observations, str):
# strings are turned into a key/value pair and a key of 'output' is added.
observations = [{"output": observations}]
elif isinstance(observations, Mapping):
# single mappings are transformed into a list to simplify the rest of the code.
observations = [observations]
elif not isinstance(observations, Sequence):
# all other types are turned into a key/value pair within a list
observations = [{"output": observations}]
for doc in observations:
if not isinstance(doc, Mapping):
# types that aren't Mapping are turned into a key/value pair.
doc = {"output": doc}
documents.append(doc)
return documents
[docs]
def multi_hop_prompt(
tools: Sequence[BaseTool], prompt: ChatPromptTemplate
) -> Callable[[Dict], BasePromptTemplate]:
"""The returned function produces a BasePromptTemplate suitable for multi-hop."""
# the directly_answer tool is used internally by the model, but never produces an
# AgentAction, so we only need to add it to the prompt.
tools = list(tools)
tools.insert(0, create_directly_answer_tool())
def inner(x: Dict) -> BasePromptTemplate:
return multi_hop_prompt_partial.partial(
structured_preamble=render_structured_preamble(
preamble=x.get("preamble", None)
),
tools="\n\n".join([render_tool(t) for t in tools]),
user_prompt=render_messages(prompt.invoke(x).to_messages()),
steps=render_intermediate_steps(x["intermediate_steps"]),
history=render_messages(x.get("chat_history", [])),
)
return inner
[docs]
def render_type(type_: str, is_optional: bool) -> str:
"""
Renders a tool's type into prompt content. Types should be Python types, but JSON
schema is allowed and converted.
"""
python_type = JSON_TO_PYTHON_TYPES.get(type_, type_)
if is_optional:
return f"Optional[{python_type}]"
else:
return python_type
[docs]
def render_role(message: BaseMessage) -> str:
"""Renders the role of a message into prompt content."""
if isinstance(message, AIMessage):
return _SpecialToken.role_chatbot.value
elif isinstance(message, SystemMessage):
return _SpecialToken.role_system.value
else:
return _SpecialToken.role_user.value
[docs]
def render_messages(messages: Sequence[BaseMessage]) -> str:
"""Renders one or more BaseMessage implementations into prompt content."""
return "".join(
[
f"{_SpecialToken.start_turn.value}{render_role(message)}{message.content}{_SpecialToken.end_turn.value}"
for message in messages
]
)