Source code for langchain.evaluation.string_distance.base

"""String distance evaluators based on the RapidFuzz library."""

from enum import Enum
from typing import Any, Callable, Dict, List, Optional

from langchain_core.callbacks.manager import (
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
    Callbacks,
)
from langchain_core.pydantic_v1 import Field
from langchain_core.utils import pre_init

from langchain.chains.base import Chain
from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator
from langchain.schema import RUN_KEY


def _load_rapidfuzz() -> Any:
    """
    Load the RapidFuzz library.

    Raises:
        ImportError: If the rapidfuzz library is not installed.

    Returns:
        Any: The rapidfuzz.distance module.
    """
    try:
        import rapidfuzz
    except ImportError:
        raise ImportError(
            "Please install the rapidfuzz library to use the FuzzyMatchStringEvaluator."
            "Please install it with `pip install rapidfuzz`."
        )
    return rapidfuzz.distance


[docs] class StringDistance(str, Enum): """Distance metric to use. Attributes: DAMERAU_LEVENSHTEIN: The Damerau-Levenshtein distance. LEVENSHTEIN: The Levenshtein distance. JARO: The Jaro distance. JARO_WINKLER: The Jaro-Winkler distance. HAMMING: The Hamming distance. INDEL: The Indel distance. """ DAMERAU_LEVENSHTEIN = "damerau_levenshtein" LEVENSHTEIN = "levenshtein" JARO = "jaro" JARO_WINKLER = "jaro_winkler" HAMMING = "hamming" INDEL = "indel"
class _RapidFuzzChainMixin(Chain): """Shared methods for the rapidfuzz string distance evaluators.""" distance: StringDistance = Field(default=StringDistance.JARO_WINKLER) normalize_score: bool = Field(default=True) """Whether to normalize the score to a value between 0 and 1. Applies only to the Levenshtein and Damerau-Levenshtein distances.""" @pre_init def validate_dependencies(cls, values: Dict[str, Any]) -> Dict[str, Any]: """ Validate that the rapidfuzz library is installed. Args: values (Dict[str, Any]): The input values. Returns: Dict[str, Any]: The validated values. """ _load_rapidfuzz() return values @property def output_keys(self) -> List[str]: """ Get the output keys. Returns: List[str]: The output keys. """ return ["score"] def _prepare_output(self, result: Dict[str, Any]) -> Dict[str, Any]: """ Prepare the output dictionary. Args: result (Dict[str, Any]): The evaluation results. Returns: Dict[str, Any]: The prepared output dictionary. """ result = {"score": result["score"]} if RUN_KEY in result: result[RUN_KEY] = result[RUN_KEY].dict() return result @staticmethod def _get_metric(distance: str, normalize_score: bool = False) -> Callable: """ Get the distance metric function based on the distance type. Args: distance (str): The distance type. Returns: Callable: The distance metric function. Raises: ValueError: If the distance metric is invalid. """ from rapidfuzz import distance as rf_distance module_map: Dict[str, Any] = { StringDistance.DAMERAU_LEVENSHTEIN: rf_distance.DamerauLevenshtein, StringDistance.LEVENSHTEIN: rf_distance.Levenshtein, StringDistance.JARO: rf_distance.Jaro, StringDistance.JARO_WINKLER: rf_distance.JaroWinkler, StringDistance.HAMMING: rf_distance.Hamming, StringDistance.INDEL: rf_distance.Indel, } if distance not in module_map: raise ValueError( f"Invalid distance metric: {distance}" f"\nMust be one of: {list(StringDistance)}" ) module = module_map[distance] if normalize_score: return module.normalized_distance else: return module.distance @property def metric(self) -> Callable: """ Get the distance metric function. Returns: Callable: The distance metric function. """ return _RapidFuzzChainMixin._get_metric( self.distance, normalize_score=self.normalize_score ) def compute_metric(self, a: str, b: str) -> float: """ Compute the distance between two strings. Args: a (str): The first string. b (str): The second string. Returns: float: The distance between the two strings. """ return self.metric(a, b)
[docs] class StringDistanceEvalChain(StringEvaluator, _RapidFuzzChainMixin): """Compute string distances between the prediction and the reference. Examples ---------- >>> from langchain.evaluation import StringDistanceEvalChain >>> evaluator = StringDistanceEvalChain() >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="Mindy is the CEO", ) Using the `load_evaluator` function: >>> from langchain.evaluation import load_evaluator >>> evaluator = load_evaluator("string_distance") >>> evaluator.evaluate_strings( prediction="The answer is three", reference="three", ) """ @property def requires_input(self) -> bool: """ This evaluator does not require input. """ return False @property def requires_reference(self) -> bool: """ This evaluator does not require a reference. """ return True @property def input_keys(self) -> List[str]: """ Get the input keys. Returns: List[str]: The input keys. """ return ["reference", "prediction"] @property def evaluation_name(self) -> str: """ Get the evaluation name. Returns: str: The evaluation name. """ return f"{self.distance.value}_distance" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """ Compute the string distance between the prediction and the reference. Args: inputs (Dict[str, Any]): The input values. run_manager (Optional[CallbackManagerForChainRun]): The callback manager. Returns: Dict[str, Any]: The evaluation results containing the score. """ return {"score": self.compute_metric(inputs["reference"], inputs["prediction"])} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """ Asynchronously compute the string distance between the prediction and the reference. Args: inputs (Dict[str, Any]): The input values. run_manager (Optional[AsyncCallbackManagerForChainRun]: The callback manager. Returns: Dict[str, Any]: The evaluation results containing the score. """ return {"score": self.compute_metric(inputs["reference"], inputs["prediction"])} def _evaluate_strings( self, *, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """ Evaluate the string distance between the prediction and the reference. Args: prediction (str): The prediction string. reference (Optional[str], optional): The reference string. input (Optional[str], optional): The input string. callbacks (Callbacks, optional): The callbacks to use. kwargs: Additional keyword arguments. Returns: dict: The evaluation results containing the score. """ result = self( inputs={"prediction": prediction, "reference": reference}, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) async def _aevaluate_strings( self, *, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """ Asynchronously evaluate the string distance between the prediction and the reference. Args: prediction (str): The prediction string. reference (Optional[str], optional): The reference string. input (Optional[str], optional): The input string. callbacks (Callbacks, optional): The callbacks to use. kwargs: Additional keyword arguments. Returns: dict: The evaluation results containing the score. """ result = await self.acall( inputs={"prediction": prediction, "reference": reference}, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result)
[docs] class PairwiseStringDistanceEvalChain(PairwiseStringEvaluator, _RapidFuzzChainMixin): """Compute string edit distances between two predictions.""" @property def input_keys(self) -> List[str]: """ Get the input keys. Returns: List[str]: The input keys. """ return ["prediction", "prediction_b"] @property def evaluation_name(self) -> str: """ Get the evaluation name. Returns: str: The evaluation name. """ return f"pairwise_{self.distance.value}_distance" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """ Compute the string distance between two predictions. Args: inputs (Dict[str, Any]): The input values. run_manager (CallbackManagerForChainRun , optional): The callback manager. Returns: Dict[str, Any]: The evaluation results containing the score. """ return { "score": self.compute_metric(inputs["prediction"], inputs["prediction_b"]) } async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """ Asynchronously compute the string distance between two predictions. Args: inputs (Dict[str, Any]): The input values. run_manager (AsyncCallbackManagerForChainRun , optional): The callback manager. Returns: Dict[str, Any]: The evaluation results containing the score. """ return { "score": self.compute_metric(inputs["prediction"], inputs["prediction_b"]) } def _evaluate_string_pairs( self, *, prediction: str, prediction_b: str, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """ Evaluate the string distance between two predictions. Args: prediction (str): The first prediction string. prediction_b (str): The second prediction string. callbacks (Callbacks, optional): The callbacks to use. tags (List[str], optional): Tags to apply to traces. metadata (Dict[str, Any], optional): Metadata to apply to traces. kwargs: Additional keyword arguments. Returns: dict: The evaluation results containing the score. """ result = self( inputs={"prediction": prediction, "prediction_b": prediction_b}, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) async def _aevaluate_string_pairs( self, *, prediction: str, prediction_b: str, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """ Asynchronously evaluate the string distance between two predictions. Args: prediction (str): The first prediction string. prediction_b (str): The second prediction string. callbacks (Callbacks, optional): The callbacks to use. tags (List[str], optional): Tags to apply to traces. metadata (Dict[str, Any], optional): Metadata to apply to traces. kwargs: Additional keyword arguments. Returns: dict: The evaluation results containing the score. """ result = await self.acall( inputs={"prediction": prediction, "prediction_b": prediction_b}, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result)