Source code for langchain.chains.question_answering.chain

"""Load question answering chains."""

from typing import Any, Mapping, Optional, Protocol

from langchain_core.callbacks import BaseCallbackManager, Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate

from langchain.chains import ReduceDocumentsChain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain
from langchain.chains.combine_documents.refine import RefineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import (
    map_reduce_prompt,
    refine_prompts,
    stuff_prompt,
)
from langchain.chains.question_answering.map_rerank_prompt import (
    PROMPT as MAP_RERANK_PROMPT,
)


[docs] class LoadingCallable(Protocol): """Interface for loading the combine documents chain.""" def __call__( self, llm: BaseLanguageModel, **kwargs: Any ) -> BaseCombineDocumentsChain: """Callable to load the combine documents chain."""
def _load_map_rerank_chain( llm: BaseLanguageModel, prompt: BasePromptTemplate = MAP_RERANK_PROMPT, verbose: bool = False, document_variable_name: str = "context", rank_key: str = "score", answer_key: str = "answer", callback_manager: Optional[BaseCallbackManager] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> MapRerankDocumentsChain: llm_chain = LLMChain( llm=llm, prompt=prompt, verbose=verbose, callback_manager=callback_manager, callbacks=callbacks, ) return MapRerankDocumentsChain( llm_chain=llm_chain, rank_key=rank_key, answer_key=answer_key, document_variable_name=document_variable_name, verbose=verbose, callback_manager=callback_manager, **kwargs, ) def _load_stuff_chain( llm: BaseLanguageModel, prompt: Optional[BasePromptTemplate] = None, document_variable_name: str = "context", verbose: Optional[bool] = None, callback_manager: Optional[BaseCallbackManager] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> StuffDocumentsChain: _prompt = prompt or stuff_prompt.PROMPT_SELECTOR.get_prompt(llm) llm_chain = LLMChain( llm=llm, prompt=_prompt, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, ) # TODO: document prompt return StuffDocumentsChain( llm_chain=llm_chain, document_variable_name=document_variable_name, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, **kwargs, ) def _load_map_reduce_chain( llm: BaseLanguageModel, question_prompt: Optional[BasePromptTemplate] = None, combine_prompt: Optional[BasePromptTemplate] = None, combine_document_variable_name: str = "summaries", map_reduce_document_variable_name: str = "context", collapse_prompt: Optional[BasePromptTemplate] = None, reduce_llm: Optional[BaseLanguageModel] = None, collapse_llm: Optional[BaseLanguageModel] = None, verbose: Optional[bool] = None, callback_manager: Optional[BaseCallbackManager] = None, callbacks: Callbacks = None, token_max: int = 3000, **kwargs: Any, ) -> MapReduceDocumentsChain: _question_prompt = ( question_prompt or map_reduce_prompt.QUESTION_PROMPT_SELECTOR.get_prompt(llm) ) _combine_prompt = ( combine_prompt or map_reduce_prompt.COMBINE_PROMPT_SELECTOR.get_prompt(llm) ) map_chain = LLMChain( llm=llm, prompt=_question_prompt, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, ) _reduce_llm = reduce_llm or llm reduce_chain = LLMChain( llm=_reduce_llm, prompt=_combine_prompt, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, ) # TODO: document prompt combine_documents_chain = StuffDocumentsChain( llm_chain=reduce_chain, document_variable_name=combine_document_variable_name, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, ) if collapse_prompt is None: collapse_chain = None if collapse_llm is not None: raise ValueError( "collapse_llm provided, but collapse_prompt was not: please " "provide one or stop providing collapse_llm." ) else: _collapse_llm = collapse_llm or llm collapse_chain = StuffDocumentsChain( llm_chain=LLMChain( llm=_collapse_llm, prompt=collapse_prompt, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, ), document_variable_name=combine_document_variable_name, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, ) reduce_documents_chain = ReduceDocumentsChain( # type: ignore[misc] combine_documents_chain=combine_documents_chain, collapse_documents_chain=collapse_chain, token_max=token_max, verbose=verbose, ) return MapReduceDocumentsChain( llm_chain=map_chain, document_variable_name=map_reduce_document_variable_name, reduce_documents_chain=reduce_documents_chain, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, **kwargs, ) def _load_refine_chain( llm: BaseLanguageModel, question_prompt: Optional[BasePromptTemplate] = None, refine_prompt: Optional[BasePromptTemplate] = None, document_variable_name: str = "context_str", initial_response_name: str = "existing_answer", refine_llm: Optional[BaseLanguageModel] = None, verbose: Optional[bool] = None, callback_manager: Optional[BaseCallbackManager] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> RefineDocumentsChain: _question_prompt = ( question_prompt or refine_prompts.QUESTION_PROMPT_SELECTOR.get_prompt(llm) ) _refine_prompt = refine_prompt or refine_prompts.REFINE_PROMPT_SELECTOR.get_prompt( llm ) initial_chain = LLMChain( llm=llm, prompt=_question_prompt, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, ) _refine_llm = refine_llm or llm refine_chain = LLMChain( llm=_refine_llm, prompt=_refine_prompt, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, ) return RefineDocumentsChain( initial_llm_chain=initial_chain, refine_llm_chain=refine_chain, document_variable_name=document_variable_name, initial_response_name=initial_response_name, verbose=verbose, # type: ignore[arg-type] callback_manager=callback_manager, callbacks=callbacks, **kwargs, )
[docs] def load_qa_chain( llm: BaseLanguageModel, chain_type: str = "stuff", verbose: Optional[bool] = None, callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> BaseCombineDocumentsChain: """Load question answering chain. Args: llm: Language Model to use in the chain. chain_type: Type of document combining chain to use. Should be one of "stuff", "map_reduce", "map_rerank", and "refine". verbose: Whether chains should be run in verbose mode or not. Note that this applies to all chains that make up the final chain. callback_manager: Callback manager to use for the chain. Returns: A chain to use for question answering. """ loader_mapping: Mapping[str, LoadingCallable] = { "stuff": _load_stuff_chain, "map_reduce": _load_map_reduce_chain, "refine": _load_refine_chain, "map_rerank": _load_map_rerank_chain, } if chain_type not in loader_mapping: raise ValueError( f"Got unsupported chain type: {chain_type}. " f"Should be one of {loader_mapping.keys()}" ) return loader_mapping[chain_type]( llm, verbose=verbose, callback_manager=callback_manager, **kwargs )